Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Shock ; 57(1): 95-105, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1574295

ABSTRACT

BACKGROUND: Endotheliopathy is a key element in COVID-19 pathophysiology, contributing to both morbidity and mortality. Biomarkers distinguishing different COVID-19 phenotypes from sepsis syndrome remain poorly understood. OBJECTIVE: To characterize circulating biomarkers of endothelial damage in different COVID-19 clinical disease stages compared with sepsis syndrome and normal volunteers. METHODS: Patients with COVID-19 pneumonia (n = 49) were classified into moderate, severe, or critical (life-threatening) disease. Plasma samples were collected within 48 to 72 h of hospitalization to analyze endothelial activation markers, including soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1), von Willebrand Factor (VWF), A disintegrin-like and metalloprotease with thrombospondin type 1 motif no. 13 (ADAMTS-13) activity, thrombomodulin (TM), and soluble TNF receptor I (sTNFRI); heparan sulfate (HS) for endothelial glycocalyx degradation; C5b9 deposits on endothelial cells in culture and soluble C5b9 for complement activation; circulating dsDNA for neutrophil extracellular traps (NETs) presence, and α2-antiplasmin and PAI-1 as parameters of fibrinolysis. We compared the level of each biomarker in all three COVID-19 groups and healthy donors as controls (n = 45). Results in critically ill COVID-19 patients were compared with other intensive care unit (ICU) patients with septic shock (SS, n = 14), sepsis (S, n = 7), and noninfectious systemic inflammatory response syndrome (NI-SIRS, n = 7). RESULTS: All analyzed biomarkers were increased in COVID-19 patients versus controls (P < 0.001), except for ADAMTS-13 activity that was normal in both groups. The increased expression of sVCAM-1, VWF, sTNFRI, and HS was related to COVID-19 disease severity (P < 0.05). Several differences in these parameters were found between ICU groups: SS patients showed significantly higher levels of VWF, TM, sTNFRI, and NETS compared with critical COVID-19 patients and ADAMTS-13 activity was significantly lover in SS, S, and NI-SIRS versus critical COVID-19 (P < 0.001). Furthermore, α2-antiplasmin activity was higher in critical COVID-19 versus NI-SIRS (P < 0.01) and SS (P < 0.001), whereas PAI-1 levels were significantly lower in COVID-19 patients compared with NI-SIRS, S, and SS patients (P < 0.01). CONCLUSIONS: COVID-19 patients present with increased circulating endothelial stress products, complement activation, and fibrinolytic dysregulation, associated with disease severity. COVID-19 endotheliopathy differs from SS, in which endothelial damage is also a critical feature of pathobiology. These biomarkers could help to stratify the severity of COVID-19 disease and may also provide information to guide specific therapeutic strategies to mitigate endotheliopathy progression.


Subject(s)
COVID-19/blood , ADAMTS13 Protein/blood , Aged , Biomarkers/blood , Complement Membrane Attack Complex/analysis , DNA/blood , Female , Heparitin Sulfate/blood , Humans , Male , Middle Aged , Patient Acuity , Plasminogen Activator Inhibitor 1/blood , Prospective Studies , Receptors, Tumor Necrosis Factor, Type I/blood , Sepsis/blood , Thrombomodulin/blood , Vascular Cell Adhesion Molecule-1/blood , alpha-2-Antiplasmin/analysis , von Willebrand Factor/analysis
3.
Expert Opin Ther Targets ; 25(6): 423-433, 2021 06.
Article in English | MEDLINE | ID: covidwho-1281815

ABSTRACT

INTRODUCTION: Defibrotide (DF) is a polyribonucleotide with antithrombotic, pro-fibrinolytic, and anti-inflammatory effects on endothelium. These effects and the established safety of DF present DF as a strong candidate to treat viral and post-infectious syndromes involving endothelial dysfunction. AREAS COVERED: We discuss DF and other therapeutic agents that have the potential to target endothelial components of pathogenesis in viral and post-infectious syndromes. We introduce defibrotide (DF), describe its mechanisms of action, and explore its established pleiotropic effects on the endothelium. We describe the established pathophysiology of Coronavirus Disease 2019 (COVID-19) and highlight the processes specific to COVID-19 potentially modulated by DF. We also present influenza A and viral hemorrhagic fevers, especially those caused by hantavirus, Ebola virus, and dengue virus, as viral syndromes in which DF might serve therapeutic benefit. Finally, we offer our opinion on novel treatment strategies targeting endothelial dysfunction in viral infections and their severe manifestations. EXPERT OPINION: Given the critical role of endothelial dysfunction in numerous infectious syndromes, in particular COVID-19, therapeutic pharmacology for these conditions should increasingly prioritize endothelial stabilization. Several agents with endothelial protective properties should be further studied as treatments for severe viral infections and vasculitides, especially where other therapeutic modalities have failed.


Subject(s)
COVID-19/complications , Endothelium, Vascular/drug effects , Polydeoxyribonucleotides/pharmacology , Blood Coagulation Disorders/drug therapy , Blood Coagulation Disorders/etiology , COVID-19/physiopathology , COVID-19/virology , Endothelium, Vascular/physiopathology , Humans , Polydeoxyribonucleotides/therapeutic use , SARS-CoV-2/isolation & purification , Post-Acute COVID-19 Syndrome
4.
Cardiovasc Drugs Ther ; 36(3): 547-560, 2022 06.
Article in English | MEDLINE | ID: covidwho-1258224

ABSTRACT

Patients with COVID-19 present a wide spectrum of disease severity, from asymptomatic cases in the majority to serious disease leading to critical care and even death. Clinically, four different scenarios occur within the typical disease timeline: first, an incubation and asymptomatic period; second, a stage with mild symptoms due mainly to the virus itself; third, in up to 20% of the patients, a stage with severe symptoms where a hyperinflammatory response with a cytokine storm driven by host immunity induces acute respiratory distress syndrome; and finally, a post-acute sequelae (PASC) phase, which present symptoms that can range from mild or annoying to actually quite incapacitating. Although the most common manifestation is acute respiratory failure of the lungs, other organs are also frequently involved. The clinical manifestations of the COVID-19 infection support a key role for endothelial dysfunction in the pathobiology of this condition. The virus enters into the organism via its interaction with angiotensin-converting enzyme 2-receptor that is present prominently in the alveoli, but also in endothelial cells, which can be directly infected by the virus. Cytokine release syndrome can also drive endothelial damage independently. Consequently, a distinctive feature of SARS-CoV-2 infection is vascular harm, with severe endothelial injury, widespread thrombosis, microangiopathy, and neo-angiogenesis in response to endothelial damage. Therefore, endothelial dysfunction seems to be the pathophysiological substrate for severe COVID-19 complications. Biomarkers of endothelial injury could constitute strong indicators of disease progression and severity. In addition, the endothelium could represent a very attractive target to both prevent and treat these complications. To establish an adequate therapy, the underlying pathophysiology and corresponding clinical stage should be clearly identified. In this review, the clinical features of COVID-19, the central role of the endothelium in COVID-19 and in other pathologies, and the potential of specific therapies aimed at protecting the endothelium in COVID-19 patients are addressed.


Subject(s)
COVID-19 , Vascular Diseases , Cytokine Release Syndrome , Endothelial Cells , Endothelium , Endothelium, Vascular , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL